Matematika

Pertanyaan

jika (x-1)^2 membagi ax^4+bx^3+1 tentukan ab

2 Jawaban

  • (x - 1)^2 = (x - 1)(x - 1) => x = 1
    Membagi (ax^4 + bx^3 + 1)
    = ax^4 + bx^3 + 0x^2 + 0x + 1
    1 | a ....... b .............. 0 ............ 0 .............. 1
    .. | ......... a ............ a + b ...... a + b ....... a + b
    ------------------------------------------------------------ +
    1 | a ...... a + b ...... a + b ........ a + b ... | ... a + b + 1 = 0 => a + b = -1
    .. | ......... a ............ 2a + b ...... 3a + 2b
    ----------------------------------------------- +
    ..... a .... 2a + b ... 3a + 2b ..|.. 4a + 3b = 0

    Eliminasi
    a + b = -1 |.4| 4a + 4b = -4
    ....................... 4a + 3b = 0
    ------------------------------------ --
    ................................... b = -4

    a + b = -1 => a + (-4) = -1 => a = 3

    ab = 3(-4) = -12
  • (x - 1)^2 = (x - 1)(x - 1) = x^2 - 2x + 2

    x^2 - 2x + 2 / ax^4 + bx^3 + 1 = 0
    1 / -a -b= 0
    -a - b = 1
    a + b = -1

    (x-1)^2 = (x-1)(x-1)

    ax^4 + bx^3 + 1 = 0
    (a + bx) (x/2 - 1) ( x - 1) = 0
    (x - 1)(x -1) / (a + bx)(x^2 - 1)(x - 1) = 0
    (x - 1) / (a + bx )( x^2 - 1) = 0
    2(x-1) / 2(a + bx)(x^2 - 1) = 0
    2 / (8a + 6b) + 1= 0
    1 / 4a + 3b + 1= 0
    1 = 4a + 3b + 1
    0 = 4a + 3b

    4a + 3b = 0 | kali 1
    a + b = -1 | kali 4
    _________
    4a + 3b = 0
    4a + 4b = -4 ( - )
    __________
    -b = 4
    b = -4

    a + b = -1
    a + (-4) = -1
    a - 4 = -1
    a = -1 + 4
    a= 3

    ab =
    a(b) =
    3(-4) =
    -12

    #semoga membantu.......

Pertanyaan Lainnya